.. _`ROC from Probabilities`: .. _`org.sysess.sympathy.machinelearning.roc_prob`: ROC from Probabilities `````````````````````` .. image:: roc_curve.svg :width: 48 Computes Receiver operating characteristics (ROC) based on calculated Y-probabilities and from true Y. Definition :::::::::: Input ports ........... **Y-prob** table Y-prob **Y-true** table Y-true Output ports ............ **roc** table roc Configuration ............. **Drop suboptimal thresholds** (drop_intermediate) Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. .. versionadded:: 0.17 parameter *drop_intermediate*. **header as label** (header as label) Use header of Y-prob as the target label **Positive class label** (pos_label) The label of the positive class. When ``pos_label=None``, if `y_true` is in {-1, 1} or {0, 1}, ``pos_label`` is set to 1, otherwise an error will be raised. Implementation .............. .. automodule:: node_metrics :noindex: .. class:: ROCFromProb :noindex: